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1 Orthogonality

Let V be a Euclidean space, and let v and u be 2 vectors in this space. Then we can define the

angle between these 2 vectors.

Definition 1.1. The angle θ between two vectors v and u from the vector space V can be

defined by the following formula:

cos θ =
〈u, v〉
‖u‖‖v‖

Actually, we should check that this definition is correct — we have an expression for cosine,

and it should belong to the interval [−1, 1]! It is easy to check. From Cauchy-Bunyakovsky-

Schwartz inequality we have

|〈u, v〉| ≤ ‖u‖‖v‖,
and so we will have

−1 ≤ 〈u, v〉
‖u‖‖v‖ ≤ 1

Let’s note that this is a general definition which works in many different spaces, and not

only in R2 and R3. For example, by this formula we can define the angle between two functions

from C[a, b] or between two polynomials.

Example 1.2. Let u = (1, 2, 3) and let v = (−1, 2,−2). Then 〈u, v〉 = −1 + 4 − 6 = −4,

‖u‖ =
√

1 + 4 + 9 =
√

14, and ‖v‖ =
√

1 + 4 + 4 = 3. So, the angle θ between these two

vectors can be defined by the following formula:

cos θ =
〈u, v〉
‖u‖‖v‖ =

−4

3
√

14
.

Another important concept is a normalization of the vector.

Definition 1.3. If v is a vector from the vector space V then the vector

v

‖v‖
is called a normalization of v.
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The main property of normalization is that it’s norm is equal to 1. So, we take a vector

which is proportional to v with the “length” 1.

Now we’ll give the very important definition — main definition of this lecture.

Definition 1.4. Two vectors u and v are called orthogonal if

〈u, v〉 = 0.

Let we have a vector v from the Euclidean space V . Let’s consider all vectors u which are

orthogonal to v, i.e. the set of vectors u such that 〈v, u〉 = 0:

v⊥ = {u ∈ V |〈u, v〉 = 0} (read “v-perp”)

This set is called the orthogonal complement to the vector v. Now let S be a set of vectors.

Then we can define S⊥ as the following set:

S⊥ = {u ∈ V |〈u, v〉 = 0 for all v ∈ S}

This set S⊥ is called the orthogonal complement to the set S. Let’s note that S⊥ is a vector

space. First, 0 is orthogonal to any other vector, since 〈0, v〉 = 0 for all v. So, 0 ∈ S⊥. Now,

let u1, u2 ∈ S⊥, such that 〈u1, v〉 = 0 for all v and 〈u2, v〉 = 0 for all v. So it follows that

〈u1 + u2, v〉 = 〈u1, v〉+ 〈u2, v〉 = 0, and thus u1 + u2 belongs to S⊥. Moreover, it is obvious to

check that if u belongs to S⊥ then ku belongs to it. Thus, we proved that S⊥ is a vector space.

Geometrically speaking, let’s consider the case of 3-dimensional space. Let v be a vector

from the 3-dimensional space, then v⊥ is the plane which is perpendicular to this vector.

Now let’s consider more difficult case, when S consists of 2 vectors v and u. In this case the

line L will be orthogonal to both vectors. It is illustrated on the picture below.
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Our goal is to describe u⊥ or S⊥ somehow, for example give a basis of it. Actually, for the

simple spaces, like Rn the basis of the orthogonal complement can be found as a basis in the

solution space of the corresponding homogeneous system. We’ll show it on the example.

Example 1.5. Let v = (1,−3, 4). Let’s find the basis of the orthogonal complement to u, i.e.

the basis of u⊥. Vector u = (x, y, z) is orthogonal to v if 〈v, u〉 = x− 3y + 4z = 0. So, we have

an equation:

x− 3y + 4z = 0.
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This can be considered as a homogeneous system with one equation and 3 variables. Here,

variable x is leading and y, z are free. So, the basis can be obtained by assigning the value 1 to

y and 0 to z, and after that 0 to y and 1 to z:

• y = 1; z = 0: x = 3, so the corresponding vector is (3, 1, 0);

• y = 0; z = 1: x = −4, so the corresponding vector is (−4, 0, 1).

Thus, the basis of the plane orthogonal to the vector (1,−3, 4) is {(3, 1, 0); (−4, 0, 1)}.

Example 1.6. Let S = {(1, 2, 2), (2, 3, 1)}. Let’s find the basis of S⊥. Vector v = (x, y, z) is

in the S⊥ if 〈v, (1, 2, 2)〉 = 0 and 〈v, (2, 3, 1)〉 = 0. We can write it as a homogeneous system

with 3 unknowns and 2 equations:

{
x + 2y + 2z = 0

2x + 3y + z = 0

Reducing it to row echelon form we get the following system:

{
x + 2y + 2z = 0

− y − 3z = 0

Here, z is free variable and x and y are leading. So, The basis will consist of 1 vector and can

be obtained by assigning the value 1 to z:

• z = 1: y = −3, x = 4, so the corresponding vector is (1,−3, 4).

Thus, S⊥ is the line which contains the vector (1,−3, 4).

Now we will see why orthogonal vectors are nice. We will call vectors v1, v2, . . . , vn orthogonal

if each pair of them is orthogonal, i.e. if

〈vi, vj〉 = 0 for i 6= j.

The following theorem gives an important property of orthogonal vectors.

Theorem 1.7. If nonzero vectors v1, v2 . . . , vn are orthogonal, then they are linearly indepen-

dent.

Proof. Let’s write a zero linear combination of these vectors:

a1v1 + a2v2 + · · ·+ anvn = 0.

Now, we’ll multiply it by v1. We will have:

〈a1v1 + a2v2 + · · ·+ anvn, v1〉 = 〈0, v1〉 = 0.
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Using linearity of the scalar product we get:

a1〈v1, v1〉+ a2〈v2, v1〉+ · · ·+ an〈vn, v1〉 = 0.

All terms except the first one are equal to 0, so we get

a1〈v1, v1〉 = 0.

Since 〈v1, v1〉 6= 0 then a1 = 0. In the same way we can prove that a2, a3, . . . , an = 0. So,

vectors are linearly independent.

Another theorem gives us a mathematically exact formulation of the fact known from the

school geometry.

Theorem 1.8 (Pythagoras theorem). If u and v are orthogonal vectors, then

‖u + v‖2 = ‖u‖2 + ‖v‖2.

Proof. We have:

‖u + v‖2 = 〈u + v, u + v〉
= 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉
= 〈u, u〉+ 2〈u, v〉+ 〈v, v〉.

Since v and u are orthogonal, 〈u, v〉 = 0, and so ‖u + v‖2 = 〈u, u〉+ 〈v, v〉 = ‖u‖2 + ‖v‖2.

In 2-dimensional space this theorem is exactly the Pythagoras theorem from the school

geometry. The following picture illustrates it:
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From this theorem it follows that if we have n orthogonal vectors in the n-dimensional

vector space, then they form a basis. Moreover, this basis is nice, and we can find coordinates

in this basis very easily. We’ll demonstrate it in the next example.

Example 1.9. Let v1 = (1, 2, 1), v2 = (2, 1,−4) and v3 = (3,−2, 1). We can check that these

vectors are orthogonal, i.e. 〈v1, v2〉 = 0, 〈v1, v3〉 = 0, and 〈v2, v3〉 = 0. So, they are linearly

independent by theorem (1.7), and since there are 3 vectors, they form a basis in R3, i.e. each

vector can be represented as a linear combination of them.

Now let u = (7, 1, 9). We want to represent u as a linear combination of v1, v2, and v3, i.e.

find coefficients a1, a2, and a3 such that

u = a1v1 + a2v2 + a3v3, (1)
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i.e.

(7, 1, 9) = a1(1, 2, 1) + a2(2, 1,−4) + a3(3,−2, 1).

The familiar way to do it is to set up a linear system and solve it for unknowns a1, a2 and

a3.

But there is an easier way to do it. Let’s multiply the equality (1) by v1, v2, and then by v3.

We will have:

〈u, v1〉 = a1〈v1, v1〉+ a2〈v2, v1〉+ 〈v3, v1〉
= a1〈v1, v1〉,

since 〈v2, v1〉 = 〈v3, v1〉 = 0. So,

a1 =
〈u, v1〉
〈v1, v1〉 =

7 + 2 + 9

1 + 4 + 1
=

18

6
= 3.

Now,

〈u, v2〉 = a1〈v1, v2〉+ a2〈v2, v2〉+ 〈v3, v2〉
= a2〈v2, v2〉,

since 〈v1, v2〉 = 〈v3, v2〉 = 0. So,

a2 =
〈u, v2〉
〈v2, v2〉 =

14 + 1− 36

4 + 1 + 16
=
−21

21
= −1.

Now,

〈u, v3〉 = a1〈v1, v3〉+ a2〈v2, v3〉+ 〈v3, v3〉
= a3〈v3, v3〉,

since 〈v1, v3〉 = 〈v2, v3〉 = 0. So,

a3 =
〈u, v3〉
〈v3, v3〉 =

21− 2 + 9

9 + 4 + 1
=

28

14
= 2.

So, we got that

u = 3v1 − v2 + 2v3.
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